Are Floating Buildings the Solution to Sea Level Rise?

The Buoyant Ecologies Float Lab in the San Francisco Bay

The Buoyant Ecologies Float Lab in the San Francisco Bay JD Beltran

 

Connecting state and local government leaders

A prototype in the San Francisco Bay is testing a vision for floating buildings built to withstand sea-level rise.

On an August day that is brutally hot by San Francisco’s foggy standards, Margaret Ikeda and Evan Jones, architecture faculty at the California College of the Arts (CCA), are on one of the campus’ back lots to present a vision of the future — though at first glance, the object they’re showing off doesn’t look like much. It’s white, roughly heart-shaped, and about the size of a sedan.

As a prototype for what the underside of a floating building — or possibly a whole floating community — might look like, however, it represents years of imagination, research, design, and testing. It also represents the hopeful vision of Ikeda, Jones, and their CCA colleague Adam Marcus, who together developed the concept with an eye toward a future of flooding amid steadily rising seas — particularly for the 10 percent of the world’s population that lives in low-lying coastal areas.

Officially, it’s called the Buoyant Ecologies Float Lab, and just a few weeks later, after a lengthy design and permitting process, the team moved the prototype to its new home in San Francisco Bay’s chilly waters. The goal is to have it remain there, a few hundred feet offshore of Middle Harbor Shoreline Park in Oakland, for three years, by which time the team hopes to have proven its viability as a potential substrate for the futuristic — and some critics of floating city models say misguided — effort to move at least some communities displaced by climate change out onto the water.

They also suggest that linking together floating structures like their prototype could help to make marine ecosystems healthier. It could also protect coastlines from further erosion in the near term, which will be crucial to places like the San Francisco Bay Area where large tracts of densely-populated land are expected to start sinking into the sea in the coming decades.

Whether or not they're right, of course, remains to be seen, but Ikeda, Jones, and Marcus are eager to test their concept. “We want to show how floating artificial structures can coexist with living ecosystems,” says Marcus.

And although they acknowledge the path from their current prototype to the design and construction of habitable buildings on the water may be long, they also say that if humanity isn't going to stop burning fossil fuels and heating up the planet, the time to start preparing workable adaptations that benefit both people and the natural environment is now.

The Float Lab grew out of a series of design studios taught by Ikeda, Jones, and Marcus. In them, students explored a question that is at once straightforward and visionary: In anticipation of rising seas eating away at the land, would it be possible to design floating buildings that provide habitat for humans while protecting — and perhaps even enhancing — marine ecosystems?

Climate change, after all, is already affecting all of the world's oceans, which absorb up to 95 percent of the excess heat that human industry is causing. The result: habitat loss for marine species, ocean acidification, widespread coral bleaching, and even changes in ocean currents. And as the team learned from early conversations with scientists, giant floating cities — like anything that floats, from boats to docks to barges — would be likely to attract barnacles and other invertebrates. Known as "fouling communities," they’re often homogenous and seen as nuisances that can push out native species over time. Indeed, there's evidence to suggest that as oceans warm, invasive species will begin to dominate these fouling communities.

After studying the problem, however, the team hypothesized that if an underwater surface had more peaks and valleys, it might act like an upside-down coral reef, both expanding the habitat and encouraging a greater diversity of species to settle.

Between 2014 and 2018, students in CCA’s Architectural Ecologies Lab worked with scientists from the Benthic Lab at the California State University System’s Moss Landing Marine Laboratories to design various prototypes, which were made at scale from fiberglass at Kreysler & Associates, a Bay Area composite fabrication company. Tests of these prototypes in Monterey Bay and San Francisco Bay showed that, indeed, a greater variety of species settled on the ones with more surface variation.

The design worked because “the peaks and valleys [are] going to create water dynamics that will enhance fouling communities,” said Brian Tissot, a professor and researcher at Humboldt State University who studies benthic ecology — the animals, plants, and microbes that live at the bottom of a body of water — and is not associated with the project. The greater variety of seaweeds, barnacles, and other filter feeders will, in turn, attract larger creatures, like crabs and fish, creating a vibrant ecosystem.

These early prototypes informed the design of the Float Lab, today a 14-foot long, 9-foot wide structure with top and bottom sides that look something like topographic maps: Each side has two “mountains,” one slightly shorter than the other, with a valley in between, and each of the mountains is made up of smaller peaks and valleys. On the underside, these variations in elevation create diverse spaces for invertebrates as well as “fish apartments,” where smaller fish can hide from predators. The top side, which will float just above the surface of the water, is equipped with a solar-powered pump that brings seawater up to the peaks and lets it filter down into the valleys, mirroring a tidepool habitat.

After testing the prototypes, the team behind the Float Lab felt confident that it could create diverse and healthy underwater ecosystems. But Marcus says the team also realized that with a few careful design tweaks, these structures could potentially counteract the effects of climate change in a more direct way.

For years now, as climate warnings have grown increasingly dire, governments worldwide have been scrambling to figure out how to address sea level rise. But a study published in Nature Communications earlier this year warned of another global warming hazard coastal communities will have to face: increasingly forceful waves. The study found that climate change has been making waves more powerful by 0.4 percent annually from 1948 to 2008.

Waves are the primary force behind coastal erosion, and as they get stronger, they will eat away at fragile shorelines more quickly, threatening not only human infrastructure, but also crucial nearshore habitats. Bluffs and shorelines can be protected with seawalls and rock barriers, but these defensive solutions do nothing to actually dampen wave energy.

For that, scientists are turning to nature for inspiration. Even before the results of this study were published, people were experimenting with solutions like rebuilding or creating artificial oyster reefs, which are known to help prevent erosion. One such example that has garnered significant attention is the “Living Breakwaters” project designed by the New York- and New Orleans-based landscape architecture firm SCAPE. It proposes coupling artificial breakwaters with oyster habitat restoration to protect Staten Island’s battered coastline, and in 2014 was one of six winners of the U.S. Department of Housing and Urban Development’s Rebuild by Design challenge.

The Float Lab, its advocates argue, has a unique advantage over that project and other artificial reefs: It is mobile. That’s key because “this could offer a more agile and more flexible, more customizable and scalable alternative to the kind of huge defensive barriers that many cities are thinking about, or even many cities are building, right now,” Marcus said.

As currently designed, there isn’t much inherent to the Float Lab’s structure that would blunt a wave. But to help with that, the team plans to attach long tubes to the bottom of the structure, making it look like a windchime — or perhaps a giant jellyfish. It adds a new dimension of utility so that “when you place the columns or the tubes close to each other, like let's say six to eight to ten inches apart, the invertebrates attach on all sides,” Marcus says, explaining, “they just kind of create this giant sponge of animals.” Scientists from Moss Landing’s Benthic Lab plan to dive below the Float Lab every month for the next three years to assess whether these columns actually soak up wave energy.

Tissot sees clear ecological benefits to the columns. He says, “adding more structure that’s vertical would definitely increase the likelihood that you're going to get a lot of fishes that will come in there. They love that kind of habitat.” But he’s unsure how far they will go towards absorbing wave power, saying “my guess is that’s pretty small to actually have much of an effect.”

Marcus acknowledges that how well they will work is still unknown, explaining that “in order for it to develop significant wave attenuation capacity you would need many of them kind of arrayed in a necklace or a network parallel to the shore.” The full Float Lab team plans to plug the data they gather into computer simulations to project the impact a whole fleet of Float Labs might have. Renderings imagine them clustered together in threes, blooming over a body of water like a field of clover.

Despite the modest near-term ambitions behind it, the Float Lab prototype bobs along in the wake of a long and controversial history of schemes to create utopias out on the water. Many have centered around the concept of seasteading, the idea of establishing new floating societies that exist outside the jurisdiction of national and international law. In fact, the most notable and best-funded of these groups, the Seasteading Institute, is also based in the San Francisco Bay area. Founded in 2008 by libertarian activists Peter Thiel, the billionaire co-founder of PayPal, and Patri Friedman, a grandson of Nobel-prize winning economist Milton Friedman, the non-profit’s vision of “freedom on the high seas” is as much about building a new society based on the free-market ideals of fewer regulations and lower taxes as it is about grappling with the impacts of climate change.

“We do distance our work from that,” says Marcus. “There is a big difference in agenda. One is about tax havens and cryptocurrencies. Ours is about multi-benefit solutions for both humans and animals.”

Regardless of political motivations, all floating city proposals face the problem of scaling up quickly enough to represent a meaningful solution for the nearly 187 million people around the world now projected to be displaced by rising sea levels in the coming decades. For now, the Float Lab team is focused on demonstrating the viability of just a single link, but their system is designed to be modular, and imagining a future in which coastlines, harbors, marshes, and other sensitive areas are protected by chains of Float Labs is made more plausible by the way they are designed and manufactured.

Because it is made up of just two pieces — plus some finishing touches, like cleats for its anchors — it would be relatively easy to churn out Float Labs by the hundreds or thousands. And they’re designed to last. Fiberglass has been used in boatmaking since the 1940s and is one of the most durable materials in marine construction; it doesn’t corrode or rot. “The first fiberglass boat ever made is probably still floating around somewhere,” says Bill Kreysler, the founder of Kreysler & Associates, the firm that helped fabricate all the prototypes and the Float Lab.

With the Float Lab launched and officially unveiled in late September, the team from CCA is already thinking about a more ambitious extension of this work. In late July, Jones and Ikeda visited the Maldives, where they and their students have been working with local partners since 2017 to imagine what a floating community could look like — a much-needed adaptation in a country that sits just about 5 feet on average above the current sea level.

The work is all still theoretical, but the vision — like that behind the Float Lab — is expansive. Renderings show pods of interconnected floating structures, pulsing with life both on the inside and below the surface. Sun streams down through skylights, flooding the buildings and artificial light attracts plankton in the ocean below. Seaweed and algae cling to the underside, while fish seek shelter behind the stalactite-like underwater mountains. Shorebirds nest on the roof next to solar panels and a rainwater catchment system.

This vision for the Maldives, the team suggests, will evolve over the coming years as lessons pour out of the Float Lab. “This is really studying how modular structures could link together to create communal systems,” says Marcus.

This article was originally published on Undark. Read the original article.

X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.